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Abstract
Purpose of Review This review aims to summarize the current knowledge regarding the pharmacological interventions 
studied in both experimental and clinical trials for secondary lymphedema.
Recent Findings Lymphedema is a progressive disease that results in tissue swelling, pain, and functional disability. The 
most common cause of secondary lymphedema in developed countries is an iatrogenic injury to the lymphatic system during 
cancer treatment. Despite its high incidence and severe sequelae, lymphedema is usually treated with palliative options 
such as compression and physical therapy. However, recent studies on the pathophysiology of lymphedema have explored 
pharmacological treatments in preclinical and early phase clinical trials.
Summary Many potential treatment options for lymphedema have been explored throughout the past two decades including 
systemic agents and topical approaches to decrease the potential toxicity of systemic treatment. Treatment strategies including 
lymphangiogenic factors, anti-inflammatory agents, and anti-fibrotic therapies may be used independently or in conjunction 
with surgical approaches.
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Introduction

Lymphedema is a progressive disease that causes tissue 
swelling, fluid accumulation, and chronic fibroadipose tissue 
deposition [1]. Lymphedema can be categorized based on the 
etiology of the disease. Patients with primary lymphedema 
have genetic abnormalities of the lymphatic system that 
manifest as tissue swelling, chylothorax, or chylous ascites 

in utero, shortly after birth, or at some point in the patient’s 
life. Secondary lymphedemas are caused by external insults 
such as infections, radiation, obesity, or iatrogenic injury 
to the lymphatic system during the course of oncologic 
surgery [2, 3]. Breast cancer, due to the high prevalence 
of this disease, is the most common cause of secondary 
lymphedema in developed countries. Approximately 1 in 
3 patients who undergo axillary lymph node dissection 
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(ALND) and 3–5% of the patients treated with sentinel 
lymph node biopsy (SLND) develop breast cancer–related 
lymphedema (BCRL) [4–7]. Lymphedema also develops in 
approximately 1 in 6 patients treated for other solid tumors 
such as melanoma, gynecological or urological tumors, or 
sarcomas [8]. Although the estimated number of patients 
who suffer from lymphedema in the USA is unknown, 
analysis of the incidence of the disease and cancer survival 
rates suggest that approximately 1 million American cancer 
survivors suffer from secondary lymphedema.

Patients with lymphedema have decreased quality of life 
(QoL) and often complain of pain and functional problems 
[1, 5, 9–14]. Nearly 40% of patients with lymphedema also 
develop recurrent infections which, in some cases, can be 
quite severe resulting in sepsis and hospitalization for intrave-
nous antibiotics. Treatment of lymphedema is time intensive 
and not always covered by insurance resulting in significant 
financial toxicity [12, 15, 16]. Despite the high incidence 
and severe sequelae of lymphedema, the disease is incurable 
and primarily treated palliatively with compression garments 
and manual lymphatic drainage [1, 17–20]. Surgical options 
have been developed in the past decade; however, the suc-
cess rates of these treatments are variable, and most patients 
still require compression after surgery [1, 21, 22]. Therefore, 
developing effective treatment strategies for lymphedema is 
an important unmet clinical need.

This review aims to summarize the current knowledge 
regarding the pharmacological interventions in experimen-
tal and clinical trials for secondary lymphedema (Table 1) 
[23–28]. The first section reviews systemic treatments, and 
the second section summarizes topical approaches.

Systemic Treatments for Secondary 
Lymphedema

Lymphangiogenic Factors

Vascular endothelial growth factor C (VEGF-C) is a high-
affinity ligand for the tyrosine kinase receptor VEGFR3. 
VEGFR3 is expressed primarily by lymphatic endothelial 
cells (LECs) and regulates important functions such as lym-
phatic vessel sprouting, LEC proliferation, migration, differ-
entiation, and expression of endothelial nitric oxide synthase 
(eNOS) [1, 29–36]. Delivery of VEGF-C using an adenovi-
ral vector to mice with primary lymphedema resulting from 
a heterozygous inactivating Vegfr-3 mutation increases lym-
phangiogenesis and decreases tissue swelling [37]. These 
findings were supported by studies in a rabbit ear model of 
secondary lymphedema in which injection of recombinant 
VEGF-C into the surgical bed increased lymphangiogen-
esis, restored normal lymphatic function, and decreased 
the severity of ear swelling compared with control animals 

[38–40]. Other groups incorporated recombinant VEGF-C 
in nanofibrillar collagen scaffolds to support collateral lym-
phatic formation across the obstructed area (BioBridge™) 
[41]. Animals treated with the device had decreased extra-
cellular fluid accumulation 3 months after surgery. In fol-
low-up animal studies, treatment with BioBridge resulted in 
increased collateral lymphatic formation toward other lymph 
node drainage basins as well as decreased edema 4 months 
after surgery [42]. Using the BioBridge in patients treated 
with vascularized lymph node transplantation (VLNT) or 
lymphovenous bypass (LVB) improved lymphatic drainage 
and decreased swelling [43]. Another retrospective study of 
29 patients treated with BioBridge and VLNT also showed 
an increase in the number of lymphatic collectors and a 
decrease of dermal backflow 1 year after surgery [44].

Due to the high costs of recombinant VEGF-C, gene 
therapy was explored to increase VEGF-C expression. Yoon 
et al. utilized a naked plasmid technique to transfer plas-
mid DNA encoding human VEGF-C to a rabbit ear model. 
This study yielded similar results to treatment with recom-
binant VEGF-C injection decreased dermal thickening and 
improvement in lymphatic pumping [45]. VEGF-C gene 
therapy successfully increased the expression of lymphangi-
ogenic markers like VEGFR-3, improving lymphatic vessel 
growth and lymphatic drainage [45, 46].

Viral vectors for VEGF delivery were also developed by 
several groups. These included a VEGFR3-specific VEGF-C 
isoform (VEGF-C156S) delivered using an adeno-associated 
viral (AAV) vector enabling long-term delivery [47, 48]. 
AAV-VEGF-C administration to the site of surgical injury 
increased lymphatic capillary regrowth and lymph vessel 
maturation in animal models [49, 50]. In humans, the effi-
cacy of Lymfactin®, an investigational adenoviral type-5-
based gene therapy vector encoding expression of human 
VEGF-C, has been studied in phase I and II clinical trials 
in conjunction with VLNT treatment [51–53]. No adverse 
events were reported at 24-month follow-up in a phase I clin-
ical trial of 15 breast cancer–related upper limb lymphedema 
(BCRL) patients (NCT02994771). In the higher dose group, 
a 46% reduction in excess arm volume was demonstrated at 
12 months after surgery alongside significant improvement 
of quality of life scores [53]. However, the results of a phase 
II double-blind, randomized, placebo-controlled, multicenter 
clinical trial (NCT03658967) were inconclusive, and devel-
opment of the drug was stopped [52].

The use of mRNA therapeutics is an evolving area of gene 
delivery therapy that has gained increased interest since the 
COVID-19 pandemic [54, 55]. Nucleoside-modified mRNA 
encapsulated in lipid nanoparticles (LNPs) encoding VEGF-
C stimulates lymphatic growth in a mouse lymphedema 
model [56]. A single injection of low-dose VEGF-C mRNA-
LNPs resulted in sustained VEGF-C levels for as long as 
60 days after treatment, stimulated site-specific lymphatic 
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Table 1  Pharmacological interventions for the treatment of lymphedema

Abbreviations: VEGF vascular endothelial growth factor, VEGFR vascular endothelial growth factor receptor, LEC lymphatic endothelial cell, 
DNA deoxyribonucleic acid, VLNT vascularized lymph node transplant, mRNA messenger ribonucleic acid, IL interleukin, hADSCs human adi-
pose-derived stem cells

Type of intervention Proposed mechanism for lymphedema treatment Authors, publication year

Systemic interventions
VEGF-C Lymphangiogenesis Szuba et al., 2002
Subcutaneous injection VEGF-C directly binds VEGFR-3 to activate intracellular signal-

ing pathways that promote LEC growth and survival
VEGF-C
Naked plasmid technique

Lymphangiogenesis
Transfer of plasmid DNA encoding VEGF-C increases 

VEGFR-3 expression and activation

Yoon et al., 2003

VEGF-C
Viral vectors:
Adenovirus
---Lymfactin®
Adeno-Associated

Lymphangiogenesis
Adenoviral and adeno-associated gene vectors encoding 

VEGF-C regenerate lymphatic vessels and preserve lymphatic 
architecture post VLNT

Lai et al., 2002
Tammela et al., 2007
Hartiala et al., 2020

VEGF-C
mRNA vectors

Lymphangiogenesis
Nucleoside-modified mRNA encoding VEGF-C stimulates site-

specific lymphatic growth at low dosages

Pardi et al., 2018
Brown et al., 2020
Szöke et al., 2021

Hepatocyte growth factor (HGF) Lymphangiogenesis
VEGFR-3 independent stimulation of LEC proliferation and 

migration

Kajiya et al., 2005
Wong et al., 2021

9-cis retinoic acid (RA) Lymphangiogenesis
Indirect activation of PI3K/Akt pathway via fibroblast receptor 

signaling to stimulate LEC proliferation

Choi et al., 2012
Wong et al., 2021

Adipose-derived stem cells (ADSCs) Lymphangiogenesis
ADSCs release a secretome of bioactive factors that reinforce 

LEC growth and survival

Hwang et al., 2011
Ahmadzadeh et al., 2020
Yan et al., 2011

Ketoprofen (NSAID) Anti-inflammatory
5-Lipoxygenase (5-LO) inhibition,
↓ leukotriene B4 (LTB4) synthesis

Nakamura et al., 2009
Tian et al., 2017
Rockson et al., 2018

Bestatin (NSAID) Anti-inflammatory
Leukotriene A4-hydrolyase (LTA4H) inhibition,
↓ leukotriene B4 (LTB4) synthesis

Tian et al., 2017
Cribb et al., 2021

Fingolimod (Gilenya®) Anti-inflammatory
Inhibition of activated CD4 + T cell emigration from LNs 

impairs TH2 differentiation

García Nores et al., 2018

Neutralizing antibodies Anti-inflammatory
Th2 inflammatory cytokine blockade
(IL-4/IL-13 inhibition)

Avraham et al., 2013
Savetsky et al., 2015
Mehrara et al., 2021

Doxycycline Anti-inflammatory
Inhibition of Th2 phenotype differentiation,
↓ monocyte recruitment,
↓ polarization of alternatively activated M �

Debrah et al., 2006
Mand et al., 2012
Furlong-Silva et al., 2021
Brown et al., 2023

Anti-transforming growth factor beta-1 (TGF- β1) Anti-fibrotic
Inhibition of TGF-β1 disrupts fibroblast maturation to myofibro-

blasts, improving lymphostatic fibrosis

Meng et al., 2016
Yoon et al., 2020

Topical interventions
hADSCs and VEGF-C hydrogel Lymphangiogenesis

hADSC mediated sustained release of VEGF-C
Hwang et al., 2011

Recombinant human fibroblast growth factor 2 (FGF2) Lymphangiogenesis
↑ VEGF-C and VEGF-D expression

Onishi et al., 2014

Tacrolimus Anti-inflammatory
Inhibition of IL-2-mediated CD4 + T cell activation/differentia-

tion

Gardenier et al., 2017
Gulmark Hansen et al., 2023

Pirfenidone Anti-fibrotic
Inhibition of TGF-β1

Baik et al., 2022

Captopril Anti-fibrotic
ACE inhibitor—inhibition of intracellular TGF-β1 signaling 

pathways

Brown et al., 2023
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growth, restored lymphatic function, and reversed clinical 
signs of lymphedema [56].

Other lymphangiogenic factors such as hepatocyte growth 
factor (HGF) and retinoic acid agonist 9-cis retinoic acid 
(9-cRA) also have therapeutic potential in preclinical models 
of lymphedema [57–61]. Treatment of cultured lymphatic 
endothelial cells (LECs) with HGF increases proliferation, 
migration, and lymphatic tubule formation, independent of 
the VEGFR-3 pathway [62]. 9-cRA, a derivative of vitamin 
A, stimulates LEC differentiation, migration, and collateral 
lymphatic formation in part by activating fibroblast receptor 
signaling and by downregulating expression of cell cycle 
inhibitors P27 and p57 [60, 61, 63–66].

Anti‑inflammatory Agents

Non‑steroidal Anti‑inflammatory Drugs (NSAID)

Rockson and colleagues demonstrated the important role of 
inflammation in the pathophysiology of lymphedema and showed 
that ketoprofen, a non-steroidal anti-inflammatory (NSAID) drug, 
decreases inflammation, improves dermal-epidermal architecture, 
decreases swelling, and increases collateral lymphatic formation 
in the mouse tail model [67, 68]. Ketoprofen also significantly 
decreased expression of inflammatory cytokines (TNF-α and 
MCP-1) and increased expression of VEGF-C. Ketoprofen was 
used in a clinical trial (NCT02257970) in patients with primary 
or secondary lymphedema of the upper or lower extremities [69]. 
In the early phases of the study, 21 patients with lymphedema 
were enrolled in an open-label trial in which 75 mg ketoprofen 
was orally administered 3 times daily for a duration of 4 months 
[69]. Treatment with ketoprofen resulted in dermal thickness 
and collagen deposition and decreased perivascular inflamma-
tion compared to pretreatment skin biopsies. No changes in limb 
volume or bioimpedance were noted. The authors then con-
ducted a randomized placebo-controlled trial with 34 patients 
(16 treated with ketoprofen for 4 months vs. 18 placebo con-
trols) with upper/lower extremity lymphedema. These studies 
also showed improved skin changes (e.g., dermal thickness) and 
decreased expression of systemic inflammatory markers such as 
granulocyte colony-stimulating factor (G-CSF). However, as with 
the non-randomized trial, no significant changes in limb volume 
or bioimpedance were noted.

Follow-up studies by Rockson’s group found that the ben-
eficial effects of ketoprofen are attributed to its inhibition of 
the 5-lipoxygenase pathway (5-LOX) metabolite, leukotriene 
B4  (LTB4) [70]. These findings led to another randomized 
clinical trial (NCT02700529) with bestatin (Ubenimex), a 
selective  LTB4 antagonist. A cohort of 146 lower extrem-
ity lymphedema patients were treated three times daily for 
6 months with bestatin. The results of this trial were incon-
clusive, and larger trials are planned [71].

Tetracyclines

Tetracycline antibiotics (e.g., doxycycline) have been used 
to treat patients with chronic filarial secondary lymphedema 
and decrease limb and tissue swelling independent of their 
antibiotic effects [72–7677••]. A double-blind, placebo-
controlled trial in Ghana evaluated lymphedema outcomes 
in patients with bancroftian filariasis who were treated with a 
6-week regimen of 200 mg/day doxycycline and anti-parasitic 
therapy vs. anti-parasitic treatments alone (ISRCTN 14,757) 
[73]. Lymphedema outcomes were measured at 12- and 
24-month time points and showed decreased serum levels 
of VEGF-C and soluble VEGFR3 levels, as improved skin 
texture and skin crease character. These findings prompted a 
larger randomized study with 3 treatments arms to compare 
the efficacy of 6-week courses of amoxicillin (1000 mg/day), 
doxycycline (200 mg/day), or placebo in 164 patients with 
mild-to-moderate filarial lymphedema (ISRCTN 90,861,344) 
[74]. At 12- and 24-month follow-up intervals, 44% of 
doxycycline patients had decreased skin thickness and swelling 
compared to only 3.2% and 5.6% of amoxicillin and placebo 
groups, respectively. Based on these results, the authors reached 
a consensus recommending a 6-week course of doxycycline 
treatment once a year or every other year for patients with mild-
to-moderate filarial lymphedema [74]. Recent findings of a 
retrospective analysis by our group in 17 patients with breast 
cancer–related lymphedema (BCRL) showed improvements 
in patient-reported quality of life following treatment with a 
6-week course of doxycycline (200 mg/day) [78]. However, 
in contrast to the studies in filariasis, we found no differences 
in limb volume or bioimpedance suggesting that larger studies 
may be needed.

Neutralizing Antibodies

Neutralizing antibodies have revolutionized treatment of 
chronic inflammatory disorders by causing targeted reductions 
in inflammatory responses and resultant decreased systemic 
toxicity. Our lab has previously shown that Th2 immune 
responses play a key role in the pathophysiology of lymphedema 
[79–81]. Based on these findings, we conducted a phase I open-
label clinical trial (NCT02494206) evaluating the efficacy of 
anti-IL4/IL13 neutralizing antibodies in the management of 
unilateral BCRL. Nine women with stage I/II BCRL were 
treated with once-monthly injections of QBX258, a drug 
consisting of humanized monoclonal antibodies against IL-4 
(VAK296) and IL-13 (QAX576) for 4 months [82••]. QBX258 
treatment was safe with most reported adverse events being 
minor and self-limited in nature. Anti-IL4/IL13 neutralizing 
antibody treatment resulted in improved histologic appearance 
of lymphedematous tissues, reduced skin stiffness, and improved 
QoL outcome measures. Therapy with compound QBX258 
significantly attenuated keratinocyte hyperplasia, mast cell 
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infiltration, and Th2-related cytokine expression within the 
skin. However, we found no significant improvements in arm 
volumes or bioimpedance. Future, larger studies possibly with 
more targeted anti-Th2 therapies are needed and planned.

Topical Treatments for Secondary 
Lymphedema

Lymphangiogenic Factors

Topical formulations of recombinant human VEGF-C have 
been developed to ensure sustained release and to avoid 
direct injection [38]. Hwang and colleagues used a gelatin 
hydrogel containing VEGF-C at the site of tissue injury in 
a lymphedema mouse model [83]. Mice treated with both 
implanted human adipose-derived stem cells (hADSCs) 
and VEGF-C hydrogel had decreased dermal edema and 
improved lymphatic regeneration compared to the controls 
treated with just hADSCs or VEGF-C alone.

Fibroblast growth factor 2 (FGF2) promotes lymphangio-
genesis via induction of VEGF-C and VEGF-D [84]. Onishi 
et al. used topical basic fibroblast growth factor (bFGF) to 
treat secondary lymphedema in a rat tail model [85]. Treat-
ment with topical bFGF increased expression of VEGF-C/D, 
increased lymphatic vessel density, decreased tail swelling, 
and improved lymphatic function.

Anti‑inflammatory Agents

Tacrolimus

Tacrolimus is a macrolide calcineurin inhibitor with anti-T-cell 
activity. FDA-approved for treating cutaneous inflammatory 
conditions, topical tacrolimus administration inhibits  CD4+ 
cell proliferation and differentiation by inhibiting IL-2 [86–94]. 
Topical administration of tacrolimus decreases inflammation, 
Th2 cytokines, fibroadipose tissue deposition, swelling, and 
improves lymphatic function in mouse models of lymphedema 
[95]. Topical application of tacrolimus, unlike oral 
administration, did not result in significant systemic absorption 
and had no significant systemic anti-inflammatory effects [91]. 
A recent open-label, single-arm, phase II trial (NCT04541290) 
demonstrated that a 6-month treatment course with topical 
tacrolimus significantly improved limb volumes, bioimpedance 
scores, and quality of life scores in eighteen women with 
BCRL. However, assessment of lymphatic function using ICG 
lymphography was inconclusive [96].

Anti‑fibrotic Therapies

Dermal fibrosis is a histological hallmark of lymphedema, 
and the degree of fibrosis positively correlates with the 

severity of lymphedema [97–99]. Progressive fibrosis 
results in lymphatic obstruction perpetuating the cycle of 
fluid accumulation, inflammation, and fibrosis. Transforming 
growth factor beta-1 (TGF‐β1) is a key regulator of fibrosis 
in a variety of organ systems [99, 101, 102100••, ]. Using 
a rat hindlimb model of secondary lymphedema, Sano 
et al. found that the TGF‐β1/Smad signaling pathway is 
responsible for the early to late changes of fibrosis that is 
seen in lymphedema patients. We have shown that the 
expression of TGF-B1 and its downstream mediators is 
markedly increased in skin biopsies collected from patients 
with stage II/III BCRL [100••]. Other studies have shown 
that inhibiting TGF‐β1 activity with a small-molecule 
inhibitor improves radiation-induced fibrosis and lymphatic 
dysfunction [103]. Blockade of TGF‐β1 signaling using 
neutralizing antibodies decreases fibrosis, increases collateral 
lymphatic formation, and decreases the pathophysiology 
of lymphedema in preclinical mouse models [102, 104, 
105]. TGF‐β1 in lymphatic fluid increases stiffness and 
proliferation of fibroblasts, LECs, and lymphatic smooth 
muscle cells (LSMCs). Topical application of pirfenidone 
(PFD), a small‐molecule inhibitor approved by the US 
Food and Drug Administration (FDA) for the treatment of 
idiopathic pulmonary fibrosis, decreases TGF‐β1 signaling, 
fibrosis, and the pathophysiologic findings of lymphedema 
in mouse models.

TGF-B1 activity in cardiac, renal, and hepatic fibrosis is 
modulated by tissue activity of tissue-specific renin-angiotensin 
system [106–115]. Expression of angiotensin-converting enzyme 
in these tissues drives the conversion of angiotensin I (Ang I) 
to angiotensin II (Ang II). AngII is a key regulator of fibrosis 
by modulating intracellular TGF-B1 activity and downstream 
signaling. ACE inhibitors or Ang II receptor antagonists inhibit 
fibrosis by decreasing TGF-β1 activity in cardiac, renal, and 
hepatic models of fibrosis [106–115]. We have recently shown 
that the expression of ACE and AngII is increased in clinical 
lymphedema biopsy specimens [116]. Topical captopril 
treatment in mouse models of lymphedema resulted in decreased 
fibrosis, inhibition of intracellular TGF-β1 signaling pathways, 
decreased inflammation, and decreased swelling.

Conclusions

Many potential treatment options for lymphedema have been 
explored throughout the past two decades including systemic 
agents and topical approaches to decrease the potential toxicity 
of systemic treatment. Treatment strategies including lymphang-
iogenic factors, anti-inflammatory agents, and anti-fibrotic thera-
pies may be used independently or in conjunction with current 
surgical approaches. Larger studies with better methodological 
design and standardized outcome measures are needed to define 
the role of these strategies in the clinical setting.
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