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Simple Summary: The current study employed a cohort of 294 patients from two hospitals in
northern Italy initially assembled to highlight factors leading to one consequence of breast cancer
(BC): upper limb unilateral lymphedema (BCRL). BCRL occurrence is a multi-factorial pathological
condition that is not widespread, with a medium-long-term onset affecting not only physical function
but also the quality of life of BC survivors. In the current study, we employed the data to stratify
the risk of BCRL using unsupervised low-dimensional data embeddings and clustering. In the
proposed approach, the ordinal and the binary patients’ clinical variables were modeled separately in
two distinct embeddings. Afterward, they were merged; thus, the final representation was a single
prognostic map displaying three clusters of patients with peculiar features. The characteristics of
each group were extracted and evaluated, identifying the factors associated with the high-risk cluster.
Our findings might provide future insight into a precise risk stratification to target high-risk patients
with tailored therapeutic intervention and focus resources on patients who deserve more attention.

Abstract: Background: Breast cancer-related lymphedema (BCRL) could be one consequence of
breast cancer (BC). Although several risk factors have been identified, a predictive algorithm still
needs to be made available to determine the patient’s risk from an ensemble of clinical variables.
Therefore, this study aimed to characterize the risk of BCRL by investigating the characteristics
of autogenerated clusters of patients. Methods: The dataset under analysis was a multi-centric
data collection of twenty-three clinical features from patients undergoing axillary dissection for BC
and presenting BCRL or not. The patients’ variables were initially analyzed separately in two low-
dimensional embeddings. Afterward, the two models were merged in a bi-dimensional prognostic
map, with patients categorized into three clusters using a Gaussian mixture model. Results: The
prognostic map represented the medical records of 294 women (mean age: 59.823 ± 12.879 years)
grouped into three clusters with a different proportion of subjects affected by BCRL (probability
that a patient with BCRL belonged to Cluster A: 5.71%; Cluster B: 71.42%; Cluster C: 22.86%). The
investigation evaluated intra- and inter-cluster factors and identified a subset of clinical variables
meaningful in determining cluster membership and significantly associated with BCRL biological
hazard. Conclusions: The results of this study provide potential insight for precise risk assessment
of patients affected by BCRL, with implications in prevention strategies, for instance, focusing the
resources on identifying patients at higher risk.

Keywords: breast cancer; lymphedema; medical algorithm; machine learning; dimensionality
reduction; precision medicine; decision support system; prognostic map
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1. Introduction

Due to the increasing overall survival of breast cancer patients and the consequent
increase in BC survivors, a growing interest has been raised in disabling the conse-
quences of cancer and its treatment [1–10]. Breast cancer-related lymphoedema (BCRL)
is one of the most common chronic disabling disorders that might affect over 50% of BC
survivors [11–13]. It is characterized by localized tissue swelling associated with fluid
retention related to surgical procedures and/or radiotherapy in breast cancer (BC) pa-
tients [14]. BCRL might often lead to psychophysical frailty with detrimental consequences
on work, career, and Health-Related Quality of Life (HR-QoL) [15–18]. Despite the dis-
abling consequences of BCRL being widely documented, few guidelines are currently
available, and the optimal management of BCRL is still challenging [19–22]. Moreover,
recent reports confirmed that BCRL is still regrettably underdiagnosed and undermanaged
with heterogeneous therapeutic approaches in prevention and treatment plans, which
severely vary between different institutions and countries [23,24]. On the other hand, the
increasing number of long-term BC survivors emphasized the need for effective preventive
strategies to address the survivorship issues better [25]. In more detail, Lin et al.’s recent
meta-analysis of randomized controlled trials [26] underlined that patients treated with
manual lymphatic drainage (MLD) have a lower incidence of lymphedema (RR = 0.58,
95% CI [0.37, 0.93], p = 0.02). Similarly, the systematic review by Hayes et al. [27] high-
lighted the significant effects of exercise therapy in preventing BCRL (RR = 0.49, 95% CI
[0.28, 0.85]). However, there is still a lack of consensus about the precise identification of
patients at higher risk, and there are no effective predictive tools to focus resources on reha-
bilitation plans to prevent BCRL, reducing its disabling consequences in BC survivors [26].
In this scenario, growing attention has been recently raised to machine learning solutions
in BC management, with promising implications in developing self-improving techno-
logical models to guide clinicians in a precision medicine approach [28]. Interestingly, in
2018, Fu et al. [29] realized and validated a real-time diagnostic tool for BCRL, assessing
the most common symptoms mentioned by BCRL patients. In more detail, the authors
assessed a 26-item tool assessing self-reported symptoms, integrating a novel machine
learning algorithm in the diagnostic process of BCRL to promote an early and time-efficient
detection of lymphedema status. Recently, Wei et al. [30] developed a machine learning
algorithm based on 24 items and included lymphedema symptoms assessment to diagnose
lymphedema. Despite the positive results of these studies, self-reported symptoms for
patients with BCRL might be affected by the intrinsic limitation of individual subjectivity
that might crucially affect machine learning algorithms [31,32]. Moreover, to the best of
our knowledge, the currently available literature on machine learning mainly concentrate
on diagnostic tools without focusing on the prevention of BCRL based on the intrinsic
characteristics of BC patients, including both cancer characteristics and cancer treatments.
These findings underlined the need for practical preventive tools to close the gap between
BC survivors and preventive, therapeutic programs, integrating technological advances
and machine learning algorithms in the comprehensive management of BC survivors
with a high risk of BCRL. Although several risk factors have been identified in BCRL
onset [10,15,33], their synergisms in BCRL development have not been deeply studied yet.
In order to better assess the multilevel interactions between different variables, machine
learning might formulate complex models integrating artificial intelligence to characterize
the latent structures between the input variables [34,35]. In this scenario, Uniform Manifold
Approximation and Projection (UMAP [36]) is a dimensionality reduction algorithm re-
cently applied in medicine and genomics [37–39], able to preserve the structure of relations
in the data. UMAP assumes the input data are uniformly distributed on a Riemannian
manifold [40], a topological space capitalizing on the local linearity found in manifolds
retaining local neighborhoods. Fundamentals features of Riemannian manifolds are the
ability to define angles and lengths over curves of the manifold. To assess this task, a metric
that is constant over the manifold to preserve its structure should be chosen. This step
also influences the construction of the simplicial complexes grouping a certain number of
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neighbor points. These sets of simplicities capture the initial underlying topology of the
dataset as a weighted graph. UMAP solves a minimization problem, usually employing
cross-entropy and stochastic gradient descent to lower the dataset’s dimensionality so that
the high-dimensional dataset and the low-dimensional projection are analog in terms of
probabilistic similarity. The UMAP bi-dimensional representations of multi-dimensional
datasets are dense point clouds that are easy to visualize, cluster, and interpret. In light of
these considerations, UMAP might have a role in developing predictive tools that might
guide clinicians in the tailored prescription of preventive rehabilitation plans. Therefore,
this cross-sectional study aimed to characterize the risk of BCRL by autogenerated clusters
of BC patients, extracting relevant patterns or factors from the unsupervised dimensionality
reduction achieved with the UMAP technique.

2. Materials and Methods

The present study analyzed a multi-centric dataset from two northern Italy hospitals
containing clinical information about BC female patients. The set of data comprised clinical
factors from women who had undergone axillary dissection for BC, gathering twenty-three
clinical variables and metadata from anonymized subjects. Patients’ clinical status was
assembled over a period ranging from January 1998 to September 2018. The list of variables
representing the clinical status of each patient included in the study was reported in Table 1
and detailed in Table A1. The clinical variables have been investigated through UMAP
employing a novel approach fusing heterogeneous attributes. This methodology produced
a non-linear dimensionality reduction of the initial database aiming to define hidden
relations in medical files not directly observable in the original records and influencing
BCRL incidence.

The variables considered included patients characteristics (AGE, BMI, NCD, and HR
DRUG), macroscopical cancer features (SIDE, G, T, N, and NR METASTATIC LN), anato-
mopathological cancer attributes (HISTOTYPE, MOLECULAR SUBTYPE, ER, PR, HER2,
Ki67, LVI, and ECE), surgical therapies (BREAST SURGERY and TOTAL NR DISSECTED
LN), and medical therapies (RT TYPE, TAXANE BASED CT, HT, and TTZ). Lymphedema-
related measurements, for example, limb volume changes, were not considered.

Among them, 9 were ordinal or categorical variables (NR METASTATIC LN, TOTAL
NR DISSECTED LN, RT TYPE, HR DRUG, HISTOTYPE, G, T, N, and MOLECULAR
SUBTYPE). At the same time, the remaining 12 were binary values (BREAST SURGERY,
SIDE, Ki67, TAXANE BASED CT, HT, TTZ, LVI, ECE, ER, HER2, NCD, and PR). AGE
and BMI were continuous data transformed into ordinal variables by binning the values
into ten ordinal levels and renamed AGE GROUP and BMI GROUP. Categorical variables
were converted into numerical values. Later on in the text, non-ordinal categorical, ordinal,
and continuous converted to ordinal clinical variables will be called ordinal variables
except where otherwise indicated. Table A1 of Appendix A details information about each
variable included in the dataset. Binary variables have two levels and could mean presence
or absence in the case of 0 or 1, or two types (i.e., for SIDE, 1 means left and 2 means right).
The column “Levels” in Table A1 could be intended as the number of unique values.
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Table 1. Variables included in the study.

Variable Type Description

NR METASTATIC LN Ord. Number of metastatic lymph nodes
TOTAL NR DISSECTED
LN Ord. Number of dissected lymph nodes

RT TYPE Cat. Types of radiation therapy (breast, supraclavicular fossa,
chest wall)

HR DRUG Cat. Type of estrogen therapy before breast cancer
HISTOTYPE Cat. Characterization of lymph node histology
G Ord. Breast cancer grading

T Ord. TNM staging system: size or direct extent of the
primary tumor

N Ord. TNM staging system: degree of spread to regional
lymph nodes

MOLECULAR
SUBTYPE Cat. Luminal A, Luminal B, ERBB2/HER2-amplified or

Triple-negative
AGE Cont. Age of the patient at diagnosis
BMI Cont. Body Index Mass
BREAST SURGERY Bin. Type of breast surgery (quadrantectomy, mastectomy)
SIDE Bin. Side of breast cancer
Ki67 Bin. Ki67 expression (low < 18% or high > 18%)
TAXANE BASED CT Bin. Underwent the Taxane-based Chemotherapy
HT Bin. Hormone therapy
TTZ Bin. Trastuzumab therapy
LVI Bin. Presence of Lymphovascular invasion
ECE Bin. Presence of Extracapsular Extension
ER Bin. Estrogen receptors
HER2 Bin. Human Epidermal Growth Factor Receptor 2
NCD Bin. Presence of comorbidities
PR Bin. Progesterone receptor

UMAP tries to preserve the local and global information contained in the input
variables by capturing the latent structures of the initial high-dimensional dataset and
representing them as a visualizable graph. This feature is one fundamental difference
between UMAP and another well-known dimensionality reduction technique, Barnes-
Hut-SNE, that preserves only the local data structure, as previously investigated by the
same authors [41]. Preserving the entire initial data structure allows for adding new
data to a learned representation. Moreover, UMAP supports merging distinct models
by intersection, union, or subtraction. In the current investigation, we leveraged both
properties of UMAP. In the proposed approach, the ordinal and the binary variables were
modeled separately in two distinct UMAP models. After obtaining the two UMAP models,
the final representation was a single low-dimensional embedding that merged the two
UMAP graphs by intersection. The current study coded UMAP to produce bi-dimensional
charts with axes representing two UMAP projections that summarize the whole dataset
over a two-dimensional plane. This analysis exploited several advantages of the UMAP
technique: one is to overcome euclidean distance limitations in high dimensions and
use other metrics between nearest neighbor points. In this way, the manifold’s local
connectivity is guaranteed. The number of nearest neighbors to build the graph is not
determined automatically by the algorithm but by users, together with the “minimal
distance” parameter that, acting on the curves defining the distance probability between
points, induced low-dimensional dense clouds of values. Parameter space investigation was
performed by random search over a grid of 1,422,960 possible parameters for the ordinal
and 1,164,240 for the binary variables. Initially, 15,000 UMAP models were prepared
for the binary and ordinal sets, whereas 100,000 random combinations derived from
these models were evaluated as the final map. The final map aimed to produce a low-
dimensional embedding of the patients that facilitated their categorization (or labeling) in
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groups associated with different BCRL risk profiles. The whole experimental procedure is
exemplified in Figure 1.

Figure 1. Overview of the procedure leading to patient grouping.

The final bi-dimensional graph represented a low-dimensionality embedding of the
original dataset over a unitless Cartesian plane. A Gaussian mixture model (GMM, [42])
determined the number of clusters: the initial GMM parameters were identified by the
k-means algorithm and later tuned with a Gaussian probability distribution. For each
bi-dimensional map, three configurations were built with two, three, or four GMM clusters
and evaluated by silhouette score. Only clusterings with a silhouette score of at least 0.6
were retained, and upon visual inspection, the model with the highest silhouette score was
selected as the final low-dimensional embedding. This final UMAP map joined the two
separate UMAP models obtained from the ordinal or binary variables, whose parameter
sets were included in Table 2. The silhouette score of the current final map was 0.805.

Table 2. Parameters selected for the initial UMAP models.

Variable Num of Neighbors Learning Rate Minimal Distance Spread Metric

Ordinal 44 0.0005 0.2 1.5 Canberra
Binary 38 0.5 0.99 3 Correlation

The next section of the study investigated the characteristics of the final map after
clustering the patients to extract relevant patterns or factors present in the groups created
by the unsupervised visualization. The UMAP bi-dimensional points representing patient
data were labeled as belonging to A, B, or C clusters (Figure 2). Indeed, the number of
clusters was in accordance with the presence of three dense and well-separated groups
on the final map. Given that each image point depicted a patient, applying the proposed
procedure could be relevant in highlighting patterns or finding hidden relations among
initial variables. As a side note, the presence of well-defined and dense data groups on the
final graph ensured that BCRL patients and cluster membership were mutually exclusive.
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Figure 2. Low-dimensional embedding of the patients into a bi-dimensional map: each point is a
patient colored according to clustering into the three groups A, B, and C. In the above figure, dots
depict patients without BCRL, while crosses represent patients with the disease.

The clustering procedure found that each label (A, B, and C) is associated with a
different risk profile of BCRL occurrence. In particular, clusters A and C have lower
percentages of BCRL patients than cluster B (Table 3). Table 3 reports the absolute number
of patients in each cluster and their percentages.

Table 3. Number of patients in each cluster and their percentages.

Patients Percentages %

A B C Margin A B C Margin

Absence of BCRL 41 106 77 224 13.94 36.05 26.19 76.19
Presence of BCRL 4 50 16 70 1.36 17.0 5.44 23.80

Margin Total 45 156 93 294 15.3 53.0 31.63 100

The value counts in Table 3 suggested the presence of “order” among clusters, which
could be reorganized as in the following Table 4, grading the probability of BCRL occurrence.
In this way, the clusters could be interpreted as explanatory ordinal variables with three
categories associated with the percentages of patients suffering from BCRL.

Table 4. Patient distribution among clusters (re-ordered columns of Table 3).

Cluster A Cluster C Cluster B Margin Total

Presence of BCRL 4 16 50 70
Absence of BCRL 41 77 106 224

Margin Total 45 93 156 294
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2.1. Alternative Clustering into Two BCRL Risk Groups

Table 4 reports the absolute number of patients in each cluster: considering the number
of patients without BCRL in A and C summed to 118, this was closer to the number of
patients without the disease as found in cluster B. Under this perspective, it could be
advisable to have groups of patients with a nearly balanced number of negative cases to
assess BCRL risk. In this way, the comparisons might be meaningful because equalizing
the number of negative subjects could highlight different drivers or hidden factors in
BCRL prognosis. It also facilitates the application of machine learning techniques as
supplementary methods for data investigation. Cluster B collects 53% of the patients in the
dataset; thus, clusters A and C were joined in a unique group, gathering nearly 47% of the
remaining subjects. This operation led to the creation of a new cluster O (aka “Others”),
gathering all subjects from A and C, as shown in Figure 3 and Table 5.

Figure 3. The patients in clusters A and C were merged into a new cluster named O. In the above
image, crosses are BCRL patients, while dots are subjects without the disease.

The new distribution of patients among clusters B and O are shown in Table 5
In Table 5, clusters O and B contain nearly the same negative cases but a different pro-

portion of BCRL positives. The values of the variables determining cluster B membership
might be interpreted as “high risk” in exhibiting the presence of the disease. In contrast,
biomarkers leading to the classification of a patient into cluster O might be associated with
a lower probability of BCRL positivity. In the original data, the BCRL point prevalence was
( 70

294 ) 23.81%, slightly above the population frequency estimated from the literature ranging
from 16.6% [43] to 20% [15]. Cluster O has a point prevalence of ( 20

138 ) 14.5%, while cluster
B of ( 50

156 ) 32.05%. The prevalence ratio between clusters is 2.2, revealing that, in cluster B,
the prevalence is more than double.

Table 5. Grouping patients from A and C into the new cluster O.

Patients Percentages %

O B Margin O B Margin

Absence of BCRL 118 106 224 40.13 36.05 76.19
Presence of BCRL 20 50 70 6.8 17.0 23.80

Margin Total 138 156 294 46.93 53.06 100

3. Results

The dataset comprised clinical information on 294 women, 70 affected by BCRL and
224 without BCRL (mean age: 59.823 ± 12.879 years, from Table A1). The average BCRL
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occurrence was 854.85 days (equivalent to 2 years and four months). The presentation of
the analysis results was divided into three sections: statistics and risk profiles obtained
from the three clusters characterization of the dataset (A, B, C) in Section 3.1, statistics
and risk profiles obtained from the two clusters labeling of patients (clusters B and O) in
Section 3.2, and machine learning evaluation of a possible scheme to automatically label
patients into three or two risk categories in Section 3.3.

3.1. Statistics on Three Clusters (A, B, C)

The Chi-Square test on the contingency table (Table 4) as a measure of association
rejects the null hypothesis of no association (or independence) between the variables
(χ2 = 13.601, p = 0.001113). Consequently, the proportion of BCRL in patients is dependent
on the categorization into A, B, and C labels; in other words, BCRL occurrence is not equally
distributed across clusters, and each cluster might be associated with a different risk of
BCRL development. However, the association is not strong, probably due to imbalanced
data because patients without BCRL are more than three times those with BCRL; indeed, the
Cramer’s V coefficient is 0.2151. Assuming one degree of freedom, a Cramer V of 0.3 could
be interpreted as a medium association: the obtained value of 0.21 could be evaluated as a
mild association between cluster assignment and BCRL presence. At the two-sided Fisher’s
Exact test using the Freeman–Halton extension, the hypergeometric probability that clusters
are equally likely to gather BCRL patients is 0.09473%, thus below the significance level of
5%. This additional statistical proof sustains the possibility of dependence between BCRL
counts and cluster membership. The re-organization of Table 2 into Table 4 promoted the
conduction of the Cochran–Armitage trend test (Z = 3.643, p = 3 × 10−4) and confirmed
the presence of a linear trend in the contingency table.

From Table 4, it could be possible to calculate the probabilities that a patient chosen
from the sample is affected by BCRL and belongs to clusters A, B, or C (Table 6), keeping in
mind that the overall marginal probability of BCRL is 23.8%.

Table 6. Probabilities of being a patient with BCRL given the categorization into three clusters.

Cluster A Cluster C Cluster B

Joint Probability of BCRL among all patients 1.36% 5.44% 17.0%
Conditional Probability that a patient has BCRL 8.88% 17.2% 32.05%

given the patient belongs to cluster A, B, or C
Conditional Probability that a patient suffering 5.71% 22.86% 71.42%

BCRL belongs to cluster A, B, or C

Cluster B gathers the highest percentage of BCRL patients, with a conditional probabil-
ity above the total marginal likelihood of having developed BCRL. Future patients inserted
in this cluster might have a higher chance of having BCRL based on the patient’s variables.
Note that the “Conditional Probability” is equivalent to the “Point Prevalence”, whereas
the “Joint Probability” can be interpreted as the “Incidence Rate” over the observed period
needed to collect the dataset. The second row of Table 6 could be interpreted as the risk
of BCRL occurrence inside each cluster. In contrast, the third row of Table 6 shows the
probability that one patient suffering from BCRL will be categorized in each group by
the algorithm proposed in the current investigation. These observations substantiated
the hypothesis of considering cluster B as the “high risk” group for BCRL occurrence and
the variables leading to categorizing a patient in this cluster as those most influential in
BCRL determination.

Additionally, proportions of patients affected by BCRL and free from the disease were
also reported in Table A15 of Appendix C. The rate ratio of BCRL inside groups is two
times as high in B than in C and nearly five times in B compared to A.
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3.2. Statistics on Two Clusters (B vs. “Others”)

In Section 2.1, clusters A and C were merged into a single cluster called “Others” and
abbreviated as O. This operation produced two clusters (B and O) with a more balanced
number of patients that are not exposed to the disease and total value counts were more
balanced.

Statistics on the patient counts of the two-by-two Table 5 confirmed a significant
association between clusters’ membership and BCRL outcome (association between rows
and columns) established by Chi-square with Yates correction (χ2 = 11.496, p = 0.0007).
Cramer φ as a measure of effect size was 0.21. The proportion of patients belonging to O
and having BCRL is 0.17, whereas the incidence proportion of patients in B suffering from
BCRL is 0.47. Subjects included in cluster B had a 30% excess probability of suffering from
BCRL compared to patients classified in cluster O.

3.2.1. Ordinal and Categorical Variables Analysis

Statistical analysis was addressed by the Mann–Whitney U test between and within
comparisons. Significant differences between cluster B (higher risk) and cluster O (lower
risk) were found in the variables reported in Table 7. The table displayed significance
if the tests were below p ≤ 0.05. No significant differences were calculated during the
within-cluster analysis.

Table 7. Significant differences in the Mann–Whitney U test B versus O between BCRL and patients
without BCRL.

Variable Clusters B vs. O Clusters B vs. O
Patients without BCRL Patients with BCRL

NR METASTATIC LN *** ***
TOTAL NR DISSECTED LN - -

G *** **
T * -
N *** *

AGE GROUP *** ***
BMI GROUP - *

Legend: p ≤ 0.05: “*”, p ≤ 0.01: “**”, p ≤ 0.001: “***”, p > 0.05: “-”.

The categorical (non-ordinal) variables were compared in terms of modal value; it is
the most common value encountered in the distributions and described in Table 8.

Table 8. Modal value of the categorical variables.

Presence of BCRL Absence of BCRL

Variable Cluster O Cluster B Cluster O Cluster B

RT TYPE 1 1 1 1
HR DRUG 6 0 6 0

HISTOTYPE 1 1 1 1
MOLECULAR SUBTYPE 1 1 1 1

The clinical factors prominent in categorizing a patient in cluster B or O and identifying
BCRL occurrence are NR METASTATIC LN, HR DRUG, and AGE GROUP. These three
components show the highest p-values at the statistical test or the most considerable
difference between modes. Other relevant elements were G, N, and BMI GROUP.

3.2.2. Binary Variables Analysis

Binary variables are those that assume precisely two values. During this analysis, two
2 × 2 frequency tables, one for cluster B and one for cluster O, were created for each binary
variable. The goal was to compare the cumulative incidence of exposed groups in both
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clusters. The term “risk” used in the first two columns of Table 9 refers to the cumulative
incidence of the patients with BCRL divided by the sum of patients exposed to the variable
of interest. This formulation addressed the event rate of BCRL as an absolute risk difference
(last column of Table 9). The risk difference could also be employed in frequency tables
with zero entries and selected for this reason. In addition, it is a measure straightforward
to interpret, showing the difference in risk between clusters.

Table 9. Absolute risk difference between clusters.

Variable Cluster B Risk Cluster O Risk Absolute Risk Diff.

BREAST SURGERY 0.257 0.102 0.155
SIDE 0.192 0.152 0.040
Ki67 0.337 0.176 0.161

TAXANE BASED CT 0.318 0 0.318
HT 0.316 0.146 0.17
TTZ 0.519 0 0.519
LVI 0.406 0.167 0.239
ECE 0.303 0.123 0.18
ER 0.328 0.145 0.183

HER2 0.483 0 0.483
NCD 0.354 0.14 0.214

PR 0.301 0.138 0.163

Binary variable values could be interpreted as whether a patient is exposed to a
treatment or not; this holds except for SIDE, which means the body part affected by breast
cancer. For the SIDE variable, the absolute risk difference calculation was less meaningful
and resulted in balanced “risks” between clusters. Concerning the other variables, the
top three differences between the risks associated with clusters were in TTZ, HER2, and
TAXANE BASED CT variables (Figure 4). Further, two variables related to a moderate risk
difference between clusters were LVI and NCD.

Figure 4. Binary variables’ absolute differential risk ordered by magnitude.

The association between BCRL occurrence and the outcomes of the binary variables
was tested statistically for each cluster: Table A16 of Appendix D shows the variables where
the statistical significance was below the threshold of p ≤ 0.05 for the Fisher exact test (in
the presence of small values in the frequency tables) or the χ2 test of independence. These
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tests found a relevant association between BCRL distribution and SIDE or TTZ (her2+) in
cluster B and nearly significant in LVI (p = 0.0628) and HER2 (p = 0.0636).

3.3. Demonstration of Automatic Patient Categorization

Five machine learning models have been trained to demonstrate the possibility of
employing cluster labels to categorize patients. This numerical experiment tested whether
models can accurately label patients or not using the whole set of ordinal and binary
variables. In previous sections, it has been shown how each label represented a different
risk profile of being affected by BCRL. Suppose the 23 variables can be automatically
related to the risk profiles generated by the procedure employing UMAP. In that case, in
the future, it could be possible to categorize new patients automatically through a trained
machine-learning model. The classifiers evaluated during this numerical experiment were
Logistic Regression (LR), Random Forest (RF), Linear Discriminant Analysis (LDA), Naive
Bayes classifier, Adaptive Boosting Classifier (ABC), and Randomized decision trees (ET).
The six classifiers were selected due to their different ability to handle heterogeneous input
variables. LR is a statistical machine learning classifier that handles natively binary and
categorical qualitative data, performing well on binary outcomes (e.g., when two clusters
were the output). LDA finds a linear combination in the input features through a discrim-
inant function: it is more suited than LR to classify multiclass outputs (e.g., when three
clusters were the variable to be predicted [44]). RF, ET, and ABC are ensembles of decision
trees, a classic data mining algorithm [45]. Ensemble learners generally have a superior
capability of modeling complex input data compared to single decision trees because ag-
gregated classifiers perform better than single ones [46]. RF performs bagging without
assumptions regarding input data distribution (which is why support vector machines
were not included), and using random feature splits can afford highly dimensional datasets.
ET is similar to RF but does not achieve bootstrapping and might be computationally faster,
offering a term of comparison to RF in the case of noisy features. ABC works on boosting
rather than bagging and adaptively weights hard-to-classify samples integrating a differ-
ent voting mechanism when selecting the outcome class [47]. The Naive Bayes Classifier
reduces input features (categorical or numerical using thresholds) to binary decisions and
might have a good performance on a dataset with mixed variable types [48].

The best model has been selected by repeated stratified cross-validation (5-folds CV
with ten repetitions) and used to evaluate the classifiers’ performance on the current dataset.
It should be underlined that classifiers were not optimized and were left with their default
hyperparameters as implemented in [49]. Skipping the hyperparameter optimization phase
was decided to judge the ability of the classifiers in their basic form and without introducing
bias for one or another; consequently, CV outcomes could be evaluated to assess estimator
performance only. Additionally, classes were weighted to account for eventual unbalances
in the number of instances.

The results of this section were quite promising in establishing a model able to connect
the 23 patient variables with the labels obtained by clustering the UMAP-derived low-
dimensional map. With three labels (A, B, and C), the peak performance is achieved by
an RF classifier (balanced accuracy 99.4 ± 0.7%), whereas using two labels (B and O) to
categorize the patients, the best classifier is shared by ET (balanced accuracy 99.0 ± 1.2%)
and RF (balanced accuracy 99.0 ± 1.2%). In both situations, other classifiers reached
comparable accuracies, as shown in the boxplots in Figures 5 and 6. Table 10 details each
classifier’s balanced accuracies at CV, including a Dummy classifier employed to show the
chance level.
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Figure 5. Balanced accuracy at CV using three labels (A, B, C)

Figure 6. Balanced accuracy at CV using two labels (B, O)

Table 10. Balanced accuracy of the tested classifiers at CV.

Two Clusters (B, O) Three Clusters (A, B, C)

Classifier Mean BA (%) SD BA (%) Mean BA (%) SD BA (%)

Dummy 51.3 ±5.3 32.5 ±6
LDA 98.4 ±1.5 95.7 ±3.3
LR 98.3 ±1.7 98.0 ±2.6

ABC 98.5 ±1.3 96.6 ±6.9
RF 99.0 ±1.2 99.4 ±0.7
ET 99.0 ±1.2 98.1 ±3.2

Bayes 91.9 ±3.3 86.1 ±5.2

4. Discussion

In the past few years, increasing interest has been rising in machine learning tech-
nology, addressing the challenge of guiding clinicians to precisely prescribing optimal
treatments. In patients with BCRL, rehabilitation might improve the long-term manage-
ment of their condition [26,27]; however, there is still a large gap in the knowledge about
preventive rehabilitation strategies in patients with higher risk, and no guidelines char-
acterize patients requiring this treatment. Moreover, effective BCRL predictive tools are
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lacking, and sustainable strategies focusing resources on patients at higher risk of BCRL
are still challenging.

In the current manuscript, a novel procedure has been tested, employing a set of mixed
variables (continuous, ordinal, categorical, and binary) to classify patients retrospectively.
Two UMAP models were merged together, and this approach is uncommon in the previous
literature, where UMAP was employed to model the data directly [50]. The clustering
results identified three groups of patients, with a different number of BCRL patients
occurring inside each group. Upon investigating two clusters to balance negative cases
(Section 3.2), the factors leading to patient classification could be associated with a different
probability of being affected by BCRL. Interestingly, our findings showed that the most
influential variables associated with BCRL were NR METASTATIC LN, G, HR DRUG,
AGE GROUP (ordinal set), TTZ, HER2, and TAXANE BASED CT (binary set). Other
relevant clinical factors were N, BMI GROUP, LVI, and NCD. In cluster B, TTZ at the χ2 test
(and partially LVI and HER2) had outcomes dependent on BCRL incidence (Appendix D,
Table A16). These outcomes are consistent with what is emerging in the BCRL literature.
In [51], the authors identified HER2 as a factor increasing BCRL risk, and TAXANE BASED
CT being associated with TTZ treatment is another element crucial in BCRL occurrence.
In another work [10], LVI was described as an indicator of BCRL. The number of lymph
nodes with metastasis (NR METASTATIC LN) was already identified as a highly influential
factor in BCRL onset [18,52], together with weight variations and obesity measured by
BMI [53,54]. Evidence that secondary lymphedema is aggravated by hormone therapy was
argued in [55]; indeed, during the present investigation, HR DRUG resulted in another
distinguishing factor between patients of the two clusters. Low physical activity and
younger AGE were related to functioning and HR-QoL [56]: some authors recognized an
active role of AGE [57–59] as a BCRL risk factor; in contrast, others found less contribution
of this variable to BCRL management [60]. Among BCRL predictors, breast tumor grade
and lymphatic spread (G and N) were considered risk factors for BCRL in multiple sources
from the medical literature [52,61,62]. In addition, the variables AGE, G, and N were also
considered prognostic factors for survivorship [63]. Further, comorbidities (NCD), such as
dyslipidemia [64], and diabetes [59], might exacerbate BCRL, especially in aged patients.
To summarize, lymphedema post-breast cancer is a multi-factor disease with etiology not
wholly understood; accordingly, the present analysis identified a subset of factors relevant
to patient risk stratification based on cluster characteristics.

The labels derived from clustering (A, B, and C or B and O) employing the novel
methodology of merging two UMAP low-dimensional representations have been adopted
to classify patients from the initial set of 23 clinical variables (Section 3.3). Five machine
learning models were trained to categorize the patients by connecting the 23 variables to
the cluster labels created by the UMAP methodology. Machine learning techniques showed
high accuracy in determining patient labeling, opening the way for future investigations on
employing the proposed procedure in precision medicine settings. The high performance
obtained meant a machine learning algorithm could quickly establish a connection between
clinical variables and the cluster labels and possibly apply those labels to new patients, as
illustrated in Figure A1 of Appendix E.

To the best of our knowledge, this is the first study integrating a machine learning tech-
nology in precisely assessing BCRL patients. The results of the present study might guide
clinicians in the tailored management of BC patients based on objective data; in particular,
a precise clusterization might identify patients at high risk, guiding the prescription of
preventive strategies to reduce lymphedema onset and optimizing resources [64,65]. On the
other hand, in patients with medium risk, a closer follow-up might be proposed to optimize
patient monitoring or early rehabilitation treatment [17,66]. However, it should be noted
that this is not the first application of machine learning in the BCRL field. In particular,
the previous study by Wei et al. [30] developed a web-based machine-learning algorithm
to improve the real-time monitoring of symptoms mentioned by BC survivors. On the
other hand, the logistic regression showed good sensitivity and specificity only in BCRL
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diagnosis, without focusing on risk assessment and patient risk stratification. Similarly,
the study by Fu et al. [29] developed a logistic regression model algorithm for the early
diagnosis of BCRL. However, the authors considered only subjective symptoms without
focusing on patients’ or cancers’ intrinsic characteristics. Moreover, no predictive algorithm
was developed in that study, and no machine learning technology assessed the multilevel
interactions among different variables. Therefore, no previous study has assessed the BCRL
onset in BC survivors applying UMAP technology, considering the patients and intrinsic
cancer characteristics to improve early detection and identify a precise risk stratification
in clusters.

Another advantage of the proposed procedure is the possibility of creating bi-
dimensional maps showing patient positioning in the embedded space (Figures 2 and 3).
Within this visualization, the plane’s regions might be associated with BCRL risk, creating
an easily interpretable graph. The image areas related to the clusters in Figures 2 and 3
could be delimited by boundaries and help clinicians visually illustrate the machine learn-
ing outcomes using graph-based intelligible health care models. Indeed, one criticism
connected with machine learning in medicine is the lack of appealing explanations of
artificial intelligence models [67].

Interestingly, the biomarker distribution using the unsupervised learning approach
and two cluster mapping presented significant intra-cluster differences. In more detail,
patients without BCRL and patients with BCRL in the two clusters were characterized by
significant differences in age, grading, tumor local extension, and molecular subtype. The
results of this machine learning clustering align with previous studies, underlining that
these factors significantly impact the risk of lymphedema development [10,33,68,69]. Thus,
recent research emphasizes that precise identifications of individual risk factors should be
integrated into routine clinical practice to optimize a patient-centered approach targeting
BCRL prevention [18]. In contrast, significant differences in terms of BMI were identified
only in the BCRL patients, suggesting that the machine learning model might consider
the body composition in the patient’s clusterization less important. Further studies are
needed to clarify the role of BMI in a comprehensive risk assessment of patients with BCRL.
However, our data suggested that it should be considered an essential coadjuvant in the
lymphedema development of BC patients, in line with the current literature [54,70]. On the
other hand, it is surprising that significant differences between clusters regarding cancer
treatments were reported only in patients without BCRL. It might partly be due to the
widely recognized role of surgery and radiotherapy in lymphedema onset [70,71], which
might affect the BCRL development and, consequently, patients clusterization, but require
other potential interactions with different variables in patients with BCRL.

In conclusion, this multi-centric cross-sectional study developed a novel methodology
integrating several variables for BC patients’ risk stratification, providing different clusters
addressing the multilevel interaction of the most common risk factors for BCRL. However,
it should be noted that this cross-sectional study is not free from limitations. First, all
the patients considered underwent axillary dissection. Indeed, most available studies
considered axillary dissection the most important risk factor for BCRL [33,72]. Lastly, the
retrospective data might provide information only about the potential association between
the different variables used for patients’ clusterization. Therefore, future prospective studies
are necessary to better characterize the effects of integrating this novel machine-learning
algorithm in clinical settings.

5. Conclusions

To date, effective predictive tools for BCRL are an urgent need in the current literature
due to the growing prevalence of BC survivors. Our results provided evidence about a
novel procedure addressing the multilevel interactions between 23 common risk factors
involved in BCRL onset. The clusters developed by UMAP might guide clinicians in
a precision medicine approach to tailor preventive strategies to individual risk. Future
research might further improve our artificial intelligence model to better characterize the
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role of different variables in reducing BCRL onset and improving long-term management
of BC survivors through clinical status prediction.
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Appendix A. Characteristics of the Clinical Variables

Table A1. Descriptive information of the variables included in the study.

Variable Mean Median SD SE Levels Range

NR METASTATIC LN 5.2959 2.0 7.2157 0.4208 33 [0, 37]
TOTAL NR DISSECTED LN 24.9626 24.0 8.6692 0.5056 42 [2, 58]

RT TYPE 1.1565 1.0 0.9997 0.0583 4 [0, 3]
HR DRUG 4.0442 5.0 2.1197 0.1236 6 [0, 6]

HISTOTYPE 1.4082 1.0 1.2652 0.0738 8 [1, 9]

https://github.com/m89p067/BCRL_unsup_clust
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Table A2. Cont.

Variable Mean Median SD SE Levels Range

G 2.3673 2.0 0.591 0.0345 3 [1, 3]
T 1.6803 1.0 0.8703 0.0508 4 [1, 4]
N 1.6054 1.0 0.8015 0.0467 3 [1, 3]

MOLECULAR SUBTYPE 1.8844 1.0 1.2143 0.0708 5 [1, 5]
AGE 1 59.823 61.0 12.879 0.7511 56 [26, 88]
BMI 26.926 26.03 5.8085 0.3388 264 [14.4, 57.2]

BREAST SURGERY 1.4048 1.0 0.4917 0.0287 2 [0, 1]
SIDE 1.4728 1.0 0.5001 0.0292 2 [1, 2]
Ki67 1.4184 1.0 0.4941 0.0288 2 [1, 2]

TAXANE BASED CT 0.5136 1.0 0.5007 0.0292 2 [0, 1]
HT 0.8537 1.0 0.354 0.0206 2 [0, 1]
TTZ 0.0918 0.0 0.2893 0.0169 2 [0, 1]
LVI 0.3571 0.0 0.48 0.028 2 [0, 1]
ECE 0.619 1.0 0.4864 0.0284 2 [0, 1]
ER 0.8741 1.0 0.3322 0.0194 2 [0, 1]

HER2 0.1088 0.0 0.312 0.0182 2 [0, 1]
NCD 0.6565 1.0 0.4757 0.0277 2 [0, 1]

PR 0.7925 1.0 0.4062 0.0237 2 [0, 1]

Legend: SD Standard Deviation, SE Standard Error. 1 Age at diagnosis.

Appendix B. Binary Variables Cross-Tables

Table A3. BREAST SURGERY vs. BCRL contingency table.

BREAST SURGERY BCRL (Unaffected) BCRL (Affected)

1 128 47
2 96 23

Table A4. SIDE vs. BCRL contingency table.

SIDE BCRL (Unaffected) BCRL (Affected)

1 109 46
2 115 24

Table A5. TAXANE BASED CT vs. BCRL contingency table.

TAXANE BASED CT BCRL (Unaffected) BCRL (Affected)

0 121 22
1 103 48

Table A6. HT vs. BCRL contingency table.

HT BCRL (Unaffected) BCRL (Affected)

0 29 14
1 195 56

Table A7. LVI vs. BCRL contingency table.

LVI BCRL (Unaffected) BCRL (Affected)

0 153 36
1 71 34
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Table A8. ECE vs. BCRL contingency table.

ECE BCRL (Unaffected) BCRL (Affected)

0 84 28
1 140 42

Table A9. ER vs. BCRL contingency table.

ER BCRL (Unaffected) BCRL (Affected)

0 26 11
1 198 59

Table A10. HER2 vs. BCRL contingency table.

HER2 BCRL (Unaffected) BCRL (Affected)

0 206 56
1 18 14

Table A11. NCD vs. BCRL contingency table.

NCD BCRL (Unaffected) BCRL (Affected)

0 75 26
1 149 44

Table A12. PR vs. BCRL contingency table.

PR BCRL (Unaffected) BCRL (Affected)

0 40 21
1 184 49

Table A13. TTZ vs. BCRL contingency table.

TTZ BCRL (Unaffected) BCRL (Affected)

0 211 56
1 13 14

Table A14. Ki67 vs. BCRL contingency table.

Ki67 BCRL (Unaffected) BCRL (Affected)

1 137 34
2 87 36

Appendix C. Additional Tables for the Three Clusters Categorization

The following Table A15 summarizes the proportion of patients with or without BCRL
inside each cluster, expecting a value of one in the case of equal groups.

Table A15. Ratio of BCRL patients vs. patients not affected by BCRL.

Cluster A Cluster C Cluster B

BCRL 4
41 = 0.097 16

77 = 0.207 50
106 = 0.471

Appendix D. Additional Tables for the Two Clusters Categorization

The association between the presence of BCRL and values of binary variables was
studied using the Fisher exact test (in the case of frequency table entries of less than 5) or
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the χ2 test of independence on the 2 × 2 frequency table for all binary variables for each
cluster. Only biomarkers that scored a p ≤ 0.1 were included.

Only SIDE and TTZ binary variables were identified as not equally distributed (thus
dependent) among patients of cluster B with the presence or not of BCRL (Table A16,
significance level at p ≤ 0.05). Variables LVI and HER2 were not far from significance,
whereas all the other binary values can be considered independent of BCRL occurrence on
both clusters.

Table A16. Association between binary variables and the presence of BCRL.

Variable Cluster Test Type p

SIDE B χ2 test 0.0022
TTZ B χ2 test 0.0279
LVI B χ2 test 0.0628

HER2 B χ2 test 0.0636

Appendix E. Future Developments

Figure A1 outlined the entire analysis sequence for producing a predictive model
using the labels generated by the UMAP clusters’ procedure demonstrated through the
manuscript. The initial validation of the method was explained in Section 3.3, where the
RF modeling of the dataset was nearly complete ensuring a solid foundation for future
application of the machine learning algorithm to new data using three or two labels. In the
future, the same classifier could be employed to score new patients and assign them a label
associated with different BCRL risk profiles.

Figure A1. Possible usage of the proposed methodology in prospective studies.
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